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ABSTRACT 

In this paper it is shown that natural selection can act on the within- 
generation variance in offspring number. The fitness of a genotype will in- 
crease as its variance in offspring number decreases. The intensity of selection 
on the variance component is inversely proportional to population size, al- 
though the fixation probability of a gene which differs from its allele only in 
the variance in its offspring number is independent of population size. The 
concept of effective population size is shown to be of limited use when there is 
genetic variation in the variance in offspring number. 

HE probability that the nest of an ant bird in tropical America escapes pre- 
Tdation is about .l. If, due to some biological constraint, ant birds can lay no 
more than M eggs in a breeding season, it is reasonable to ask: should all M eggs 
be put in one basket, or  should they be evenly distributed into k baskets? The 
mean number of successful fledglings will be the same in both cases, but the 
variance in the numbers of fledglings will be M 2  (.09) in the first case, M2 (.09)/k 
in the second. The second strategy seems preferable, yet the existing mathematic- 
cal theory of natural selection does not seem to have treated this situation. In this 
paper the consequences of selection on the variance in offspring number will be 
explored mathematically. At the outset it is important to note that the variance 
in the numbers of offspring of a genotype has two components, the within- 
generation component resulting from different individuals of the same genotype 
having different numbers of offspring, and a between-generation component due 
to the effects of a changing environment. This latter component has been recently 
investigated (GILLESPIE 1973); the former will be explored in this paper. 

1. Haploid selectiom Consider a haploid population made up of two genotypes, A ,  and A,, 
whose numbers in the t t h  generation, t = 1, 2, 3, . , . , are z1 ( 5 )  and x 2 ( t ) ,  respectively. Let 
1 + Y i j  ( t )  be a random variable representing the number of offspring of the jth individual of 
the i t h  genotype in the t t h  generation. If the collection of random variables {Yij(t), i = 1,2; 
i = 1,2, . . . xi ( t )  } are independent, the process (z, ( t )  , x2 ( t )  ) is the two-dimensional branching 
process introduced as a genetic model by FELLER (1951). As pointed out by FELLER, this process 
may be approximated by a diffusion process whose forward equation may be written 

where 1 + p i  is the mean number of offspring of genotype Ai and U: is the variance in the 
number of offspring of genotype Ai. The density of (zl(t), x2 ( t ) )  is given by +(x,, z2, t ) .  This 
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equation may be transformed into an equation in p ,  the frequency of allele Ai, and n, the total 
population size by 

, n=x ,+x ,  21 p = -  
X1+% 

yielding a new forward equation 

If we regard this equation as approximating the behavior of a density-regulated population, 
n may be viewed as a fixed constant instead of a Markovian variable, and we will be left with 
a one-dimension process in p with drift coefficient 

and diffusion coefficient 

V ( p )  =-- 
n 

( 5 )  

Unlike the equivalent coefficients used in the stochastic models pioneered by WRIGHT (1946) 
and KIMURA ( l W ) ,  these coefficients explicitly incorporate the variances in offspring numbers 
of the two genotypes. Their exclusion from the WRIGHT-KIMURA theory is due to the postulated 
“infinite gametic pool” (CROW and KIMURA 1970, p. 327) which, through the law of large 
numbers, removes the possibility of variance effects being important. In the present model, one 
which is certainly closer to reality for many species, the “gametic pool’’ will be essentially the 
same size as the final population. 

Examination of M ( p )  shows immediately the two main properties of the action of selection 
on the within-generation component of variance in offspring number: (1) Lowering the variance 
in offspring number will increase the fitness of a genotype. (2) The strength of selection for the 
variance component is inversely proportional to population size. 

Selection on variance in offspring number can be studied in isolation from mean effects if 
we set p1 = p z .  In this situation the probability of fixation of allele A,, given an initial fre- 
quency p ,  is 

where 

(See CROW and KIMURA 1970 for the theory which allows the calculation of u ( p ) ) .  This prob- 
ability is independent of population size, contrary to all other forms of natural selection (KIMURA 
1962). The reason for this is that both the intensity of selection and the magnitude of the 
stochastic effects are inversely proportional to population size. I t  is also interesting to note that 
the probability, u ( p ) ,  depends on  the ratio of variances rather than their absolute values, this, 
again, being unlike other forms of selection. Examination of u ( p )  shows that the allele with the 
smaller variance in offspring number always has a better chance of fixation than a neutral allele 
with the same initial frequency. This further strengthens the statement that selection favors 
smaller variances in offspring number. 

A seemingly paradoxical situation arises if we consider the limiting deterministic model 
which is obtained by letting n + 00. At the limit the rate of change of p is zero, yet, since u(p>  
is independent of n, there remains a non-zero probability of the allele with the smaller variance 
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becoming fixed. To resolve this, examine the conditional mean time to fixation for allele, A,, 
given that it does, in fact, become fixed. Using the theory of EWENS (1972), this mean time may 
be shown to equal 

or, apprroximately if p / a  is small: 

The mean time is, therefore, proportional to the population size. In large populations, selection 
for variance in offspring numbers would proceed very slowly; at the limit it would take, on the 
average, an infinite time to reach fixation. Thus, the paradox is resolved. 

It is possible to make a somewhat stronger statement about the behavior of the conditional 
waiting time to fixation than simply noting that its mean time approaches inf ini ty .  For the 
conditional process the drift coefficient is 

(10) 
U'(P) 

M * b )  = M ( p )  + V(P) - 
(PI  * 

The diffusion coefficient is the same as in the unconditional process (EWENS 1972). The Laplace 
transform of the waiting time to fixation density g(h;p,n), satisfies an equation of the form 

vag" + M* ( p )  g' - Xg= 0. (11) 

Since both V ( p )  and M ( p )  have factors of l / n ,  multiplying through this equation by n causes n 
to appear only as a factor of A. The Laplace transform for populations with successively larger 
and larger population sizes will, therefore, be simple compressions of the smaller ones toward 
zero. This implies that the 

( 12) 

Turning now to the more complicated case where the two alleles differ in both their mean 

2 

liliwg(h; p,n) = 0, A > 0 : 

Thus, the entire probability mass of the waiting time density approaches infinity. 

and variance in offspring numbers, we arrive at the probability of fixation of A,  as 
- 2ns 

+ I  

+ I  
( 1 3 )  

1 - (1 + p/ . )  0 2 2  - U12 

1 - ( 1  + 1/a)  u22 - u12 

U ( P )  =- - 2ns 

where 

This formula illustrates the way that increasing population size decreases the role of variance 
selection. In fact, as n+ 00 

-2n (41 - PJ 

-2n (a - Pz 1 

P 1 - e  u12 

I - e  UI2 

P(P) -+ - ( 1 5 )  

which is of the same form as the fixation probability applicable to the WRIGHT-KIMURA model 
(KIMURA 1962). KIMURA'S formula may also be obtained from (15) by allowing the variances 
in offspring number of the two genotypes to approach each other. 

Examination of the second derivative of u ( p )  shows it to be convex or concave depending on 
the sign of s. If 
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then A,  has a better chance of becoming fixed than a neutral allele with the same initial fre- 
quency. For this reason the best measure of the fitness of genotype Ai is 

1 
p .  - - u.2 ’ n a  

a quantity which depends on the population size. With this definition comical situations will 
sometimes arise. For example, if p, > p 2  and u12 < u22, there exists a population size for which 
the two alleles are neutral ( M ( p )  =O).  

The accuracy of these formulae may be checked by various methods. In Table 1 the results 
of computations of fixation probabilities when the numbers of offspring per individual are 
binomially distributed and the population process is generated by the direct-product branching 
process model of KARLIN and MCGRFGOR (19W) are compared to the diffusion approximations. 
The agreement is quite good, even for small population sizes. This justifies, in part, the use of n 
as a constant rather than a Markovian variable. 

TABLE 1 

A comparison of the exact values for the fixation probabilities with formula (6)  

P N=10 
U = 1.33 

20 

.1 .1367 .1374 ,1429 .1510 . l a 8  . I  629 

.5 .5981 .5987 .moo .6330 .m3 .6366 

.9 .9335 .9336 .9310 . 9 w  ,9464 .9* 

2. Diploid selectiom The diploid model is treated in an analagous fashion. If there are three 
genotypes, A,A,, A,A,, and A,A2, with means and variances in offspring numbers given by 
1 + mi and 1 + ui2, i = 1 ,  2, 3 respectively, it can be shown (see APPENDIX) that the drift 
coefficient for the diffusion approximation is 

M ( P )  =p(l--P)  t - P ( ~ l - ~ 2 ) - ( l - 7 J )  (m,-m,) 

and the diffusion coefficient is 

The drift coefficient is an obvious extension of the haploid case. The diffusion coefficient is some- 
what more interesting. It should be viewed as the sum of two components, the first, 

is a consequence of the randomness introduced by mendelian segregation. The second, 

comes from the randomness due to variable offspring number. If the variances of all three 
genotypes are equal, and if m, = 0, we obtain the coefficients of the WRIGHT-KIMURA theory. 

Examination of the drift coefficient shows that selection again has the ability to work on 
variances in offspring numbers. Of particular interest is the possibility of heterozygote advantage 
resulting from a lower variance in offspring number in the heterozygote. The strength of this 
selection is, again, inversely proportional to population size, and for  very large ppulations this 
would be a negligible force for maintaining variations. The probability of fixation of allele A ,  
may be written down for the diploid case, although the expression is rather cumbersome and 
yields little additional insight into the process. 
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DISCUSSION 

The most remarkable aspects of selection for within-generation variance in 
offspring number are (1 ) the necessity of including the population size in the 
definition of fitness and ( 2 )  the appearance of p in the coefficient of p ( 1 - p )  in 
V ( p ) .  This latter property requires some comments since, by convention, the 
effective population size is precisely this coefficient, and is independent of p in 
the WRIGHT-KIMURA model. In the haploid model the effective size is 

n 
pu; + ( 1  - p )  U; = 

and in the diploid model is 
2n 

n e ( p )  = 1 + m* + U," + 2 p ( l - p )  (U; + U; - 2,;) . 

In both cases the most common allele is the least important in determining the 
effective population size. In the diploid model, when either allele is rare, the 
heterozygote will always be the genotype of importance in determining the 
effective population size. By continuity, if one allele is eliminated from the 
population, the effective size should be determined by this now-absent allele. 
This rather uncomfortable conclusion suggests that the concept of effective popu- 
lation size loses a good deal of its value in the context of the present model. I t  
remains useful, however, as a description of the gross reproductive pattern of the 
population. 

Selection for the within-generation component of variance in off spring number 
shares certain properties with selection for the between-generation component. 
The most striking similarity is in the respective measures of fitness. For the 
between-generation component, the best measure of fitness of genotype Ai is 

1 
2 '  

pi - - a? 

(GILLESPIE 1973). The similarity of this expression to (16) suggests that a 
similar phenomenon is operating in both models. One expression of this phenome- 
non is that the advantage which a genotype gains thro,ugh producing many 
offspring in a good year does not balance the disadvantage from producing few 
offspring in a bad year. Thus a lowering in the variance in the offspring number, 
be it the within- or  between-generation components, can only raise the probability 
of leaving offspring behind. 

I would like to thank BILL DRITSCHILO for computing the exact results given in Table 1. DRS. 
JAMES CROW and WARREN EWENS provided many helpful suggestions which significantly im- 
proved the final version of the paper. 
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APPENDIX 

We will begin by deriving the drift and diffusion coefficients for the diploid forward equation 
corresponding to ( 1 ) .  If, in generation t there are z, ( t )  A ,  alleles and z,(t) A ,  alleles, the num- 
bers of these three genotypes are assumed to be npz, n2pq, and nq2 where 2n = 2, + x2, p = 
z , /n,  and q = 1-p. The mean and variance of the numbers of A,  and A,  alleles produced by 
these genotypes, under the assumption of random mating, may be derived by combining the 
contributions of the three genotypes considered separately. The mean number of A ,  and A,  
alleles produced will be 

np2 (1 + m,) + pq (1 + m,) 
n e  (1 + m3) + P4 (1  + 7%) 

M ,  (XI, z 2 )  = n(p"m,+ P P , )  
M ,  (z,, 2 2 )  = n(pqm2 + q2m,). 

so the expected changes in  the number of A,  and A, alleles are 

These correspond to p,z, and p,z, in  (1). They have been notated using n and p for convenience, 
although it should be kept in mind that the process being described is (z,, z2) and not, at this 

The variance in the number of A ,  alleles produced may also be calculated by considering the 
contributions of the three genotypes taken separately. For A,, the contribution from A,A, is 
n.pzu12 and from A,A, is npqu,2/2 + npg (1 f mz)/2. The contribution from the heterozygote 
may be calculated from the generating function of the number of A ,  alleles produced per hetero- 
zygote, F(1/2+ 1/2s), where F ( s )  is the generating function of the number of offspring per 
heterozygote. This, and the analogous calculations for A,, lead to the diffusion coefficients. 

point, (n,p) * 

Finally, there is a covariance term which comes from the fact that each gamete produced by 
a heterozygote is either A,  o r  A,. The covariance in the number of A,  and A,  alleles is readily 
shown, again using generating functions, to be 

Mi, Vi, and C define a diffusion process in  z, and z,. Using the transformation (2) this is con- 
verted into one in  p and n. Holding n constant yields (1 7) and (18). 


